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A theoret ical  analysis  of the hydrodynamic modes in a fixed granular  layer  is ca r r i ed  out for an 
ascending direct  flow of gas and liquid. A number  of hydrodynamic models are  proposed and con-  
ditions for the passage f rom one mode to another are  determined. 

The flow conditions for a gas-- l iquid mix tu r e  in the space between grains  of a packed bed (PBF) govern 
heat, mass ,  and momentum t ranspor t  to a considerable degree. Knowing them becomes especial ly necessa ry  
in the development of a number of highly intensive technological p rocesses  in energet ics ,  pe t rochemis t ry ,  
and chemical  technology. 

The modern state of the ar t  of the theory of d isperse  media flow does not afford the possibili ty of 
describing the origin and existence of different hydrodynamic modes in a packed bed. Hence, in our opinion, 
the examination Of a number  of physical  models of gas-- l iquid mixture motion in a granular  bed and the de t e r -  
mination of c r i t i ca l  conditions for  the passage f rom 3r o mode to another are  mos t  convenient. 

To clar i fy the regular i t ies  of gas and liquid motion in the free volume of the layer ,  qualitative experi-  
mental  investigations were conducted in a t ransparent  100-mm-diamete r  column with an ascending direct  flow 
of gas and liquid. It was established that depending on the d ischarges  and dimensions of the packing in the 
PBF,  five of the mos t  charac te r i s t i c  hydrodynamic modes could be isolated: 1) bubble; 2) shell in the channels 
between grains;  3) piston in the scale of the whole bed; 4) annular -d isperse ;  5) drop. 

The bubble mode is charac te r i zed  by the fact that the gas motion is accomplished in the form of bubbles 
insulated f rom each other. The size of the bubble depends on the distributive units and geometr ic  s t ructure  
of the packed bed, and the rate  of ascension is determined by the balance between the mechanical  forces  acting 

on the ascending bubble. 

If the spacing between elements  of the bed is g rea te r  than the bubble size determined by the distributive 
unit, then the gas motion is accomplished within the scales  of one grain. In the opposite case ,  a bubble 
encompasses  several  gra ins  during its motion through the granular  layer.  It can be assumed that an inequality 
following f rom the Taylor  theory of instability [1] is the boundary of these domains: 

Rc~ V f 
g (02 - -  01) " 

A theoret ical  analysis  and the experimental  resul ts  presented in [2] show that the bubble s t ructure  in a 

bubbling layer  can exis t  up t o a  0.3-0.4 gas content. 

Spoilage of the flow mode and the passage to a shell mode are  observed for large values of the gas f r ac -  
tion. The cr i t ica l  conditions of this passage can be determined for  a packed bed if conditions for the approach 
and m e r g e r  of success ive  bubbles are  known. It  is  hence neces sa ry  to take their  mutual influence into account. 
Thus, if the spacing between bubbles is less  than 2-3 d iameters ,  then, as follows f rom [3], the second bubble 
is incident in the wake of the leader  (first bubble) and its velocity will increase  as they approach. Fo r  large 
spacings the bubble motion occurs  independently. 

Institute of Catalysis ,  Siberian Branch, Academy of Sciences of the USSR, Novosibirsk.  T rans l a t ed f rom 
Inzhenerno-Fiz icheski i  Zhurnal, Vol. 31, No. 3, pp. 402-409, September, 1976. Original ar t icle  submitted 

Apri l  14, 1975. 

I This material is protected by copyright registered in the name of  Plenum Publishing Corporation, 227 West 17th Street, New York, iV. Y. 10011. No part I 
of  this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, I 
microfilming, recording or otherwise, without written permission o f  the publisher. A copy of  this article is available from the publisher for $7.50. ] 

1010 



X 

a b 

Fig. 1. G e o m e t r i c  models  of bed sect ions:  a) model  of bub-  
ble s t ruc tu re  (1 is  the leading bubble and 2 is  a bubble in the 
wake of the f i rs t ) ;  b) annular  flow model  (1 is  the gas  co re  of 
the s t r e a m ,  2 is  a liquid f i lm,  and 3 is  a fixed fluid). 

If the space  between the g ra ins  is  r e p r e s e n t e d  as a channel of va r iab le  c r o s s  section,  and the bubble 
there in  by a spher ica l  sec to r ,  then the ma thema t i ca l  descr ip t ion  of the motion of the cen te r s  of g rav i ty  for  
a pa i r  of approaching bubbles has  the fo rm 

A I - A  dx  _ _ A s  x d2x 
2 d T  = ~ d T  ~ ' 

dy d W  d~y 

(I) 

(2) 

where  

A1 = B1 g(P~--p,)R0 . B2 = 1 2 ~ z R ~  1 - - e  5/3 
p~u~ ' p2uoV ( l - - e ) ~  ; 

Az=B2 1 - -cosa /2 ;  A3 = p2u~V ; P =  - -  ; 
P2 

uot xl  Yl T =  - - "  x = - - ;  y ~ _ - - ;  
Ro ' Ro Ro 

sin -~-a 4- 2 ( l - -  cos-~_ a ) 
f (~) = 2 2 

- ?  + - ~  1 - - c o s - -  ~ 
2 

fort =0:x=0, y=--L/R0, dx/dT =dy/dz= i. 

Equations (i) and (2) take account of the influence on the bubble motion of gravity, friction, and de- 
formation in connection with narrowing of the channel [4], as well as acceleration of the second bubble caused 
by motion of the first. According to [3], this last acceleration can be represented as 

Since the coefficient  of the highest  der iva t ive  in (1) and (2) is  a smal l  quantity, then an asymptot ic  expansion 
of the solutions can be wri t ten on the bas i s  of [5]. Thus,  by manipulat ing the sys t em presen ted  above, we 
obtain 

dx 
- -  = u ,  ( 4 )  
d~ 
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Fig. 2. Dependence of the height 
of the capillary rise on the packing 
radius and the wettability angle: 1) 
R = 1 cm; 2) 0.75; 3) 0.15; 4) 0.25 
h, era. 

du I~ -~x = A1 - -  A~u A3x, 

d_y_y = y, (5) 
d~ 

dY dlV 
~ = Ba - -  B2Y -k- I x d-T~ 

Omitting all the intermediate computations because of ~heir awkwardness, let us just present the expressions 
for the f irs t  approximations: 

x = A'[IA. L - -exp - - ~  �9 + ~ t_~, A~.  -L-, ' 

As x ) + 2 ( 1 - - - ~ - ~ ) - - ( 1 - - ~ - X ) e x p ( - - A 2 0 ) ] ,  • exp (-- ~-2 

A. 1- 

- -  A~ , 

- - ( 1 -  -~-21 ) Oexp (--A~O)] , 

L B 1 lx { 

+ (  1 -- -~-2~ ) [1 --exp(--B'O)' } ' 

v B1- t- 1--  B_~ exp(_B~0)+i~__+.B_ ~ 
B 2 B2 

• exp( R~ --B,O )--exp(--B,O)[~f2(x)dOio--~exp(B,O)',('~)dO] I , 

• -- x.-k- D B 2 ~: ' 

f,,x, = 8 [.dx, d~x RO , -~xdx ]2 l exp (-- - ~ -  ) J 

"r I--~ O~ - - , L =  AL. p~ e(p 

(6) 

(7) 

(s) 

(9)- 
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Fig. 3. Influence of the numbers  We and ~ /h  [1) ~ /h  = 0.1; 2) 0.5; 3) 
1.0] (a) and We and 7 [1) ~/= 0; 2) 0.66; 3) 1.0] (b) on the d imension-  
less wave number.  

As follows f rom the geometr ic  model taken (Fig. la),  the approach of the bubbles is possible at spacings 
equal to the gra in  radius R. Fo r  uniform motion of the bubbles at the velocity u0, the spacing between them 
x--y will remain  constant and equal to L/R0, while r = (x--y)/u 0 = R/R 0- Therefore ,  if the t ime to t r a v e r s e  
this spacing under the nonuniform motion determined f rom the solution of (6)-(9) is less  than R/R0, then the 
bubbles approach; otherwise,  they diverge. 

An analysis of (6)-(10) shows that we can limit ourse lves  to the zero  approximation in computing the 
velocity of bubble motion and the spacing between them. The e r r o r  associated with neglecting t e rms  con- 
taining ~ is not more  than 5%. The condition for passage f rom the bubble mode to the emulsion foam or shell 
will have the following form in this case:  

e~o B 2 A~ ! - - e x p ~ - - - 2 , , o ]  " 
(10) 

The approaching bubbles can move in the form of nonassociated agglomerates  or  shells depending on the dif- 
ference between the dynamic p r e s s u r e s  acting on the phase interfaces  and the viscous fo rces  stabilizing the 
film. Thus, if 

P2 (u,~ - -  u~) u, - u2 ( n )  
2 >tt~ ~ '  

then a discontinuity occurs  in the surface of separat ion and the bubbles unite into a sheli; otherwise,  an 
emulsion motion mode is observed.  The quantity A cha rac te r i zes  the film thickness at which the discontinuity 
s ta r t s  and this can be determined experimental ly.  

The shell mode in the packing channels is charac te r i zed  by the motion of relat ively stable large gas 
bubbles whose length is considerably g rea t e r  than their  d iameter  and compr i ses  severa l  packing dimensions. 
An increase  in the gas discharge will resul t  in a growth of the shell length and a diminution in the thickness 
of the liquid connectors.  In the long run this resul ts  in merging of the shells and the formation of channels 
in the space between the grains.  The conditions for the passage to such a mode can be obtained analogously 
to [6] in the form 

re(u1A-u s + k t / ~ )  = u  x, (12) 

where m is an empir ica l  constant,  equal to 0.943 for a laminar  flow, and k = 0.35 [6]. 

Let us consider  the singulari t ies  of fluid motion through a granular  bed in the case of long shell or gas-  
channel formation. The hydrodynamic model is presented in Fig. lb. The mathemat ical  descript ion for  
per turbed flow can be represen ted  as [7-9] 

Op _ ( o,,' ou' ao'~ (13) 
Ox p.~ -ff~ -[- V ~x- q- v dy ] 

in conformity with the l inear theory  of stability for zone 2. Later ,  going over to the s t ream functions 

= r (y) exp [i (rex-- o~t)lu' = ~y, v ' =  ~ ,  (14) 

let us write the boundary conditions for the corresponding zones: 

Op~ Op2 03~1 (15) y = --6 : r  q~2, -- ~ - -  

ax ax Ox ~ 
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This condition cha rac t e r i ze s  the balance of the forces  on the interphase surface of separation [8] taking su r -  
face tension into account: 

O P 2 =  O P 3 .  y = 0 : % = % ,  ~ _, 
Ox~ Ox 

y = h :  c?,p = 0 ,  
Oy 

where h is the height to which the fluid r i se s  in the var iab le-sec t ion  capil lary.  It can be determined from the 
solution of the t ranscendental  equation 

cos 0 + r' sin {} 2_~_~ (16) 
P2gh = ]fl l -4- (r') ~ r ' 

where r(h) = R---/R2--h2; r '  = dr /dh,  numer ica l  resul ts  of which are  presented in Fig. 2. 

The analysis  of the sys tem (13)-(16) reduces  to determining the dependence of the vibration increment  
on the wave number  for  different values of the pa r ame te r s  We, 6/h,  7.  The resul ts ,  obtained on a "Minsk- 
32" electronic digital computer ,  are  represented  in Fig. 3, wher8 values of the dimensionless  wave number 
corresponding to the maximum of the vibration wave number  are plotted along the ordinate axis. The curves  
presented determine the boundary between the stable and unstable domains. 

It is seen f rom this figure that for high values of 6 / h  the fluid film is unstable in pract ical ly  the whole 
range of variat ion of We. This means  that motion of the gas  and liquid in separate  channels is more  stable 
in a granular  layer  consist ing of sma l l - s i ze  packing elements.  In the terminology of Fig. 3, this corresponds  
to an effective diminution in the quantity 6 / h  and an increase  in D~, which resul ts  in stability. The channel 
size which is hence obtained can be est imated by means  of the formula 

Rc ~ ~ ~h (17) 
2 D;, 

Therefore, the problem of destruction of a gas channel for packings in which the dimension is less than 
R cr determined from (17) reduces to the problem of dissociation of a jet in an unbounded medium~ An analysis 
carried out in [7] has shown that this phenomenon is observed for wave-number values equal to 2/3 We. The 
instability condition for the phase separation boundary, which follows from the theory of dynamic waves [8], 
hence has the form 

2 Vv'e 
2 <  ua(1--q~) i u~r ~rnq~ (1--  r P~--plcth 3 (18) 

u2~ u 1 (1 - -  @ ulu2 OlP~ cth ~ We 
3 

If the granular  layer  consis ts  of elements  whose l inear  dimension is g r ea t e r  than R cr ,  then the motion 
becomes unstable only for definite values of the numbers  We and T (Fig. 3). The channel size which can be ob- 
tained analogously to (17) is less  than the geometr ic  size in this case,  and it is hence natural  to assume that 
separat ion of the fluid drops f rom the surface of the moving film occurs  ra ther  than the formation of new 
channels; L e., the passage over  to the drop mode is observed. Therefore ,  for such packings (12) determines  

the passage over  to a d i sperse -annula r  mode. 

The condition for going over to the drop mode can be obtained f rom the equation of wave propagation of 
the phase separat ion surface,  which can be obtained in case  of the presence  of a solid wall and free boundaries 

according to Milne-Thompson [8]: 

P2 (u~ - -  c) ~ cth m (a - -  28) + Pl (u~ - -  c) 2 cth m (h -k- 6) = ~m. (19) 

If (17) has no real  roots  in the dynamic velocity c, then the surface of separation is unstable,  and the condition 
for  fluid film destruct ion (this condition simultaneously governs  the passage f rom the d i sperse-annular  to the 

drop mode) appears  as follows: 

A -k- 1_ B, (20) 
(ul - -  u2)2> A 

where 
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A = P---~-~ cth m (h q- 5) . B ----- (rm 
Pl cth m (a - -  26) ' p~ cth m (a - -  26) 

The value of the wave num ber  m is  found as a function of We and 3 / f rom Fig. 3. 

The pis ton mode  is  accompanied  by the fo rmat ion  and motion of gas  bubbles and liquid connec tors  whose 
d imensions  agree  with' the column d iamete r .  The conditions for  the originat ion of such a mode depend on the 
l inear  d imens ions  of the l aye r  and on the d i scharge  c h a r a c t e r i s t i c s  according to (12) and (18). The de te r -  
minat ion of the s table  mot ion domains  of gas  or  liquid pis tons reduces  to analyzing the two-dimens ional  
Navie r - -S tokes  equations for  two f ree  p h a s e - s e p a r a t i o n  boundaries.  This  p rob lem is  sufficiently complex  and 
can be the topic of a spec ia l  invest igation.  Within the f r a m e w o r k  of the p r e sen t  p a p e r  we l imit  ourse lves  to 
approximate  e s t i m a t e s  which follow f r o m  the p roposed  physica l  model  of dissociat ion.  Exper imen ta l  r e su l t s  
on the veloci t ies  of pis ton mot ion show that  the i r  veloci t ies  a re  p rac t i ca l ly  independent of the gas  and liquid 
volume d i scharges .  This  m e a n s  that  the th ickness  of the fluid piston d iminishes  with the i nc r ea se  in the gas  
veloci ty  to a ce r t a in  c r i t i ca l  quantity, which p r e s a g e s  the occu r rence  of dissociat ion.  Since the regu la r i t i e s  
g rea t ly  r e s e m b l e  jet  d issocia t ion under the influence of t r a n s v e r s e  per turba t ions ,  the ra t io  L c r  = 37r c r/p2 u2 
p re sen ted  in [7] can then be used to e s t ima te  the c r i t i c a l  piston thickness .  On the other  hand, by s tar t ing f rom 
the d i scharge  c h a r a c t e r i s t i c s  L c r  = R(1--~)/eW; hence, piston dissocia t ion is  obse rved  in the following ease:  

I--~ ~ 3~_L_~ (21) 

Therefore, the condition for passage from one mode to another is determined successfully as a result 

of the investigation performed. The problem of the next stage in the research is the experimental verification 
of the inequalities obtained. 

N O T A T I O N  

R cr ,  c r i t i ca l  radius ;  o, coefficient  of sur face  tension;  P l, P 2, gas  and liquid densi t ies ;  V, bubble volume; 
R0, bubble radius;  u0, veloci ty  of unper turbed bubble motion;  ~ ,  gas  content; e ,  l aye r  poros i ty ;  a ,  geomet r i c  
dimension of the packing; x, y, coordina tes ;  D, channel d iamete r ;  t, t ime;  L,  init ial  spacing between bubbles; 
AL,  c h a r a c t e r i s t i c  packing dimension;  A L  = R; u 1, gas  veloci ty in the computat ion on the f r ee  l aye r  section; 
m, wave number ;  ~c, f requency;  7, deflection of the p h a s e - s e p a r a t i o n  sur face ;  u, v, ve loci t ies  of unper turbed 
f i lm motion along the x axis;  0, wettabi l i ty angle; g, f r e e - f a l l  accelera t ion;  h, wavelength; u2, fluid veloci ty 
in the computat ion on a f r ee  l aye r  section;  u4, veloci ty of piston motion,  R, column radius;  c, veloci ty of 
dynamical  waves;  ~t ~, dynamical  v i scos i ty  of the fluid; ul2 , re la t ive  veloci ty  of phase  motion; p, p r e s s u r e .  

Indices: 1, gas  phase;  2, fluid; 3, packing; ~:=! u2~ We p2u212 h : u23 4eR 2~h 
, = 7 = - - - ;  a = - - ;  D ~ - -  

u l  (1 -- q~) O" u~ 3 (1 -- e,) ~, 
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