HYDRODYNAMIC MODE IN A THREE-PHASE
FIXED GRANULAR LAYER,
THEORETICAL ANALYSIS

V. A, Kirillov, B. L. Ogarkov, UDC 532.546
and V. G. Voronov

A theoretical analysis of the hydrodynamic modes in a fixed granular layer is carried out for an
ascending direct flow of gas and liquid, A number of hydrodynamic models are proposedand con-
ditions for the passage from one mode to another are determined.

The flow conditions for a gas—liquid mixture in the space between grains of a packed bed (PBF) govern
heat, mass, and momentum transport to a considerable degree. Knowing them becomes especially necessary
in the development of a number of highly intensive technological processes in energetics, petrochemistry,
and chemical technology.

The modern state of the art of the theory of disperse media flow does not afford the possibility of
describing the origin and existence of different hydrodynamic modes in a packed bed. Hence, in our opinion,
the examination of a number of physical models of gas—liquid mixture motion in a granular bed and the deter-
mination of critical conditions for the passage from c»= mode to another are most convenient.

To clarify the regularities of gas and liquid motion in the free volume of the layer, qualitative experi-
mental investigations were conducted in a transparent 100-mm-diameter column with an ascending direct flow
of gas and liquid, Tt was established that depending on the discharges and dimensions of the packing in the
PBF, five of the most characteristic hydrodynamic modes could be isolated: 1) bubble; 2) shell in the channels
between grains; 3) piston in the scale of the whole bed; 4) annular-disperse; 5) drop.

The bubble mode is characterized by the fact that the gas motion is accomplished in the form of bubbles
insulated from each other. The size of the bubble depends on the distributive units and geometric structure
of the packed bed, and the rate of ascension is determined by the balance between the mechanical forces acting
on the ascending bubble. :

If the spacing between elements of the bed is greater than the bubble size determined by the distributive
unit, then the gas motion is accomplished within the scales of one grain. In the opposite case, a bubble
encompasses several grains during its motion through the granular layer. It can be assumed that an inequality
following from the Taylor theory of instability [1] is the boundary of these domains:

cI o
Rz l/g(pz—pl) '

A theoretical analysis and the experimental results presented in [2] show that the bubble structure in a
hubbling layer can exist up to.a 0.3-0.4 gas content.

Spoilage of the flow mode and the passage to a shell mode are observed for large values of the gas frac-
tion. The critical conditions of this passage can be determined for a packed bed if conditions for the approach
and merger of successive bubbles are known, It is hence necessary to take their mutual influence into account.
Thus, if the spacing between bubbles is less than 2-3 diameters, then, as follows from [3], the second bubble
is incident in the wake of the leader (first bubble) and its velocity will increase as they approach. For large
spacings the bubble motion occurs independently.
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Fig. 1. Geometric models of bed sections: a) model of bub-
ble structure (1 is the leading bubble and 2 is a bubble in the
wake of the first); b) annular flow model (1 is the gas core of
the stream, 2is a liquid film, and 3 is a fixed fluid).

If the space between the grains is represented as a channel of variable cross section, and the bubble
therein by a spherical sector, then the mathematical description of the motion of the centers of gravity for
a pair of approaching bubbles has the form

dx d’x 1
A —A,— —Ax=p——, 1)
! dt s Mdrz
2
B, —B,— dy +n W Péiy (2)
dt dz?
where
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for 7 = 0: x=0, y=—L/Ry, dx/d7 =dy/dr = 1.

Equations (1) and (2) take account of the infiuence on the bubble motion of gravity, friction, and de-
formation in connection with narrowing of the channel [4], as well as acceleration of the second bubble caused
by motion of the first. According to [3], this last acceleration can be represented as

dt - D
Since the coefficient of the highest derivative in (1) and (2) is a small quantity, then an asymptotic expansion

of the solutions can be written on the basis of [5]. Thus, by manipulating the system presented above, we
obtain

dx
—_— == U, 4
Te 4)
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Fig. 2. Dependence of the height
of the capillary rise on the packing
radius and the wettability angle: 1)
R=1cm; 2) 0.75; 3) 0,15; 4) 0.25

h, cm,
p,—‘—i?— = A, — Au — Az,
dt
dy _y
dt

dy dw
~— =B,—B)Y —_—
”d‘r 1 2 +Hd'r.

Omitting all the intermediate computations because of their awkwardness, let us just present the expressions

for the first approximations:

A1 e (4 )] J_[(ALAsT_w—AJ—)
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Fig. 3. Influence of the numbers We and 6/h [1) 6 /h = 0.1; 2) 0.5; 3)
1.0] (a) and We and vy [1) y = 0; 2) 0.66; 3) 1.0] (b) on the dimension-
less wave number.

As follows from the geometric model taken (Fig. la), the approach of the bubbles is possible at spacings
equal to the grain radius R. For uniform motion of the bubbles at the velocity u,, the spacing between them
X~y will remain constant and equal to L/R,, while T = (x~y)/uy = R/R,. Therefore, if the time to traverse
this spacing under the nonuniform motion determined from the solution of (6)-(9) is less than R/R;, then the
bubbles approach; otherwise, they diverge.

An analysis of (6)-(10) shows that we can limit ourselves to the zero épproximation in computing the
velocity of bubble motion and the spacing between them. The error associated with neglecting terms con-
taining u is not more than 5%. The condition for passage from the bubble mode to the emulsion foam or shell
will have the following form in this case:

1—¢ B, R, Al[ ( A3R)]
1> —% 71 N Ty _exp(— . (10)
= &P Bz + R As P AzRo

The approaching bubbles can move in the form of nonassociated agglomerates or shells depending on the dif-
ference between the dynamic pressures acting on the phase interfaces and the viscous forces stabilizing the
film, Thus, if

P, (U} — u3) Uy —u, (11)
g R TR
then a discontinuity occurs in the surface of separation and the bubbles unite into a shell; otherwise, an

emulsion motion mode is observed. The quantity A characterizes the film thickness at which the discontinuity
starts and this can be determined experimentally.

The shell mode in the packing channels is characterized by the motion of relatively stable large gas
bubbles whose length is conciderably greater than their diameter and comprises several packing dimensions.
An increase in the gas discharge will result in a growth of the shell length and a diminution in the thickness
of the liquid connectors. In the long run this results in merging of the shells and the formation of channels
in the space between the grains., The conditions for the passage to such a mode can be obtained analogously
to [6] in the form

mu, +u,+ k) gD) =u, (12)
where m is an empirical constant, equal to 0.943 for a laminar flow, and k = 0.35 [61.

Let us consider the singularities of fluid motion through a granular bed in the case of long shell or gas-
channel formation. The hydrodynamic model is presented in Fig, 1b, The mathematical description for
perturbed flow can be represented as [7-9]

dp o’ ou' dv’)
- —p, [ v 4w 13
ox e ( ot - dx ™ dy (13)
in conformity with the linear theory of stability for zone 2. Later, going over to the stream functions
. R -,
P= cp(y)e_XP[t(mx—mt)]u =% Y=o (14)
let us write the boundary conditions for the corresponding zones:
 9p ap o
=—0:9, =9, i 2 - _ g 15
Yy 0= F» pwr (15)
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This condition characterizes the balance of the forces on the interphase surface of separation [8] taking sur-
face tension into account;

ap a
y=0:q0,=¢q, —Lz — 9P .
P = P35 ox o
Jp
y:h:___z ,
0

where h is the height to which the fluid rises in the variable-section capillary. It can be determined from the .
solution of the transcendental equation :

b cosb -+ r'sin® _Qi" 16
0.8 V_'———l T (r,“—)z - ; (16)

where r(h) = R—VR%’—h% r' = dr/dh, numerical results of which are presented in Fig. 2.

The analysis of the system (13)-(16) reduces to determining the dependence of the vibration increment
on the wave number for different values of the parameters We, 6/h, v. The results, obtained on a "Minsk-
32" electronic digital computer, are represented in Fig. 3, where values of the dimensionless wave number
corresponding to the maximum of the vibration wave number are plotted along the ordinate axis, The curves
presented determine the boundary between the stable and unstable domains.,

It is seen from this figure that for high values of 6/h the fluid film is unstable in practically the whole
range of variation of We. This means that motion of the gas and liquid in separate channels is more stable
in a granular layer consisting of small-size packing elements. In the terminology of Fig. 3, this corresponds
to an effective diminution in the quantity 6/h and an increase in D;, which results in stability. The channel
size which is hence obtained can be estimated by means of the formula
ser A nh

R~ 2 (17)
2 Dy,
Therefore, the problem of destruction of a gas channel for packings in which the dimension is less than

RCT determined from (17) reduces to the problem of dissociation of a jet in an unbounded medium. An analysis
carried out in [7] has shown that this phenomenon is observed for wave-number values equal to /3 We. The
instability condition for the phase separation boundary, which follows from the theory of dynamic waves [8],
hence has the form

: T p,—p cth—Q—We'
m(l—g) , _ we _ omp(l—g) " 3
U u,(1— ) Uiy plpzcth %_We

2 < (18)

If the granular layer consists of elements whose linear dimension is greater than RCY, then the motion
becomes unstable only for definite values of the numbers We and y (Fig. 3). The channel size which can be ob-
tained analogously to (17) is less than the geometric size in this case, and it is hence natural to assume that
separation of the fluid drops from the surface of the moving film occurs rather than the formation of new
channels; i, e., the passage over to the drop mode is observed. Therefore, for such packings (12) determines
the passage over to a disperse-annular mode.

The condition for going over to the drop mode can be obtained from the equation of wave propagation of
the phase separation surface, which can be obtained in case of the presence of a solid wall and free boundaries
according to Milne~-Thompson [8]:

0y (g — 0 cth m (a— 28) 4 py (g — ) cthm (b + 6) = om. (19)

If (17) has no real roots in the dynamic velocity c, then the surface of separation is unstable, and the condition
for fluid film destruction (this condition simultaneously governs the passage from the disperse-annular to the
drop mode) appears as follows:

w—up>-2EL B, (20)

where
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The value of the wave number m is found as a function of We and y from Fig. 3.

The piston mode is accompanied by the formation and motion of gas bubbles and liquid connectors whose
dimensions agree with the column diameter, The conditions for the origination of such a mode depend on the
linear dimensions of the layer and on the discharge characteristics according to (12) and (18). The deter-
mination of the stable motion domains of gas or liquid pistons reduces to analyzing the two-dimensional
Navier—Stokes equations for two free phase-separation boundaries. This problem is sufficiently complex and
can be the topic of a special investigation. Within the framework of the present paper we limit ourselves to
approximate estimates which follow from the proposed physical model of dissociation., Experimental results
on the velocities of piston motion show that their velocities are practically independent of the gas and liquid
volume discharges. This means that the thickness of the fluid piston diminishes with the increase in the gas
velocity to a certain critical quantity, which presages the occurrence of dissociation, Since the regularities
greatly resemble jet dissociation under the influence of transverse perturbations, the ratio LCr = 3w g/ p2uz
presented in [7] can then be used to estimate the critical piston thickness. On the other hand, by starting from
the discharge characteristics LCT = ﬁ(l—cp)/ €@ ; hence, piston dissociation is observed in the following case:

1—o < 3mo

Therefore, the condition for passage from one mode to another is determined successfully as a result
of the investigation performed. The problem of the next stage in the research is the experimental verification
of the inequalities obtained.

NOTATION

RCT, critical radius; v, coefficient of surface tension; uy, p,, gas and liquid densities; V, bubble volume;
Ry, bubble radius; vy, velocity of unperturbed bubble motion; ¢, gas content; ¢, layer porosity; o, geometric
dimension of the packing; X, y, coordinates; D, channel diameter; t, time; L, initial spacing between bubbles;
AL, characteristic packing dimension; AL = R; uy, gas velocity in the computation on the free layer section;
m, wave number; «, frequency; n, deflection of the phase-separation surface; u, v, velocities of unperturbed
film motion along the x axis; 6, wettability angle; g, free-fall acceleration; A, wavelength; u,, fluid velocity
in the computation on a free layer section; u, velocity of piston motion, R, column radius; ¢, velocity of
dynamical waves;u,, dynamical viscosity of the fluid; u,,, relative velocity of phase motion; p, pressure,

pauty t4ag 4R 2nh

Indices: 1, gas phase; 2, fluid; 3, packing; uo=1——.%2% . = e o, M . D, =
& P P g ur(1—g) ° We o i gy’ ¢ 3(1—e) » A
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